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Abstract
We present an unsupervised, local activation-dependent learning rule for
intrinsic plasticity (IP) which affects the composition of ion channel
conductances for single neurons in a use-dependent way. We use a
single-compartment conductance-based model for medium spiny striatal
neurons in order to show the effects of parameterization of individual ion
channels on the neuronal membrane potential-curent relationship (activation
function). We show that parameter changes within the physiological ranges are
sufficient to create an ensemble of neurons with significantly different activation
functions. We emphasize that the effects of intrinsic neuronal modulation on
spiking behavior require a distributed mode of synaptic input and can be
eliminated by strongly correlated input. We show how modulation and
adaptivity in ion channel conductances can be utilized to store patterns without
an additional contribution by synaptic plasticity (SP). The adaptation of the
spike response may result in either "positive" or "negative" pattern learning.
However, read-out of stored information depends on a distributed pattern of
synaptic activity to let intrinsic modulation determine spike response. We briefly
discuss the implications of this conditional memory on learning and addiction.
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            Amendments from Version 1

We have addressed the referee’s comments in this version. 
We define the term ‘activation function’ in the abstract as the 
membrane potential-current relationship, and use ‘activation 
function’ as a technical term throughout the paper. We now also 
use ‘modulation’ instead of ‘variability’ which makes the paper 
clearer. In the introduction, we have clarified the difference 
between intrinsic plasticity (which requires a ‘read-out’ state to 
influence neural behavior) and synaptic plasticity (which is always 
present). We have also added a comment on a statistical analysis 
of the learning process, pointing out how further analysis could be 
done to answer this question (p.9). The problem of a connection 
between firing rate and ion channel plasticity has been addressed 
by adding a reference to a potential intracellular feedback 
connection (p.9), and the question of combining positive and 
negative pattern learning has also been addressed (p.11).
We suggest that additional synaptic learning would influence the 
stability of the learning rule; therefore an analysis of stability has 
not been carried out in this paper (p.10).
All other points and minor errors have been addressed directly in 
the revised version according to the referee’s comments. Figure 1–
Figure 3 have also been updated.

See referee reports

REVISED

Introduction
A role for modification of activation functions, or intrinsic plasticity 
(IP), for behavioral learning has been demonstrated for a number of 
systems1–3. For instance, in rabbit eyeblink conditioning, when ion 
channels related to after hyperpolarization are being suppressed by 
a learning event, they can become permanently suppressed. This 
has been shown for pyramidal cells of hippocampal areas CA1 
and CA3, and for cerebellar Purkinje cells4,5. In some cases, these 
changes are permanent and still present after 30 days6,7, in other 
cases, intrinsic changes disappear after 3–7 days, while the behav-
ioral memory remains intact, raising questions about the long-term 
component of intrinsic plasticity in these systems. There are at the 
present time conflicting ideas on the significance of IP compared to 
synaptic plasticity1,8, and the range of functions that IP may have in 
adaptivity9–12.

A few computational models have been proposed that show how 
modification in activation functions can be achieved with ion chan-
nel based models of realistic single neurons. Marder and colleagues 
have developed an approach, where they sample a very large 
parameter space for conductances of ion channels, exploring non-
linearities in the relation between conductances and neural spik-
ing behavior13–15. The motivation for this research are observations 
about neuromodulation and intrinsic plasticity in specific neurons 
of an invertebrate ganglion (e.g. LeMasson et al.,16). They have 
noted that large variations in some parameters may have little 
effect on neuronal behavior, while comparatively small variations 
in certain regions in parameter space may change response prop-
erties significantly. They also suggest that neuro modulation may 
provide an efficient means of targeting regions in parameter space 
with significant effects on response properties14.

A study by Stemmler and Koch17 assumed the goal of modification 
of activation functions is to achieve an optimal distribution of firing 
rates for a population of neurons. The idea was that by tuning each 

neuron to a different band of the frequency spectrum, the full band-
width of frequencies could be employed for information transfer. 
This goal was achieved by adjusting Na+, K+, and Ca++ channels for 
a generically defined neuron until a desired frequency was stably 
reached.

We present a different approach, where the modification of acti-
vation functions reflects the history of exposure to stimuli for a 
specific neuron. In previous work18,19, it was suggested that synap-
tic LTP/LTD and linear regulations of intrinsic excitability could 
operate in a synergistic fashion. However, in our approach, different 
types of synaptic stimulation result in state changes for the neuronal 
unit, influencing its capacity for read-out of stored intrinsic prop-
erties. Different types of synaptic stimulation result in changes of 
neural transmission properties — synchronized input leading to a 
timed spike regime and distributed input leading to a ‘read-out’ of 
the intrinsic frequency or gain function. Thus, intrinsic plasticity, in 
contrast to synaptic plasticity, is only expressed or ‘read out’ under 
conditions of ongoing background stimulation, not in the presence 
of strong synchronous input. The learning rule that we derive as 
the basis for adjustment concerns one-dimensional upregulation or 
down-regulation of excitability in the “read-out” state of the neu-
ron, and affecting only this state. This rule uses neural activation, 
significantly determined by intracellular calcium for the learning 
parameter, which can be shown to be biologically well-motivated 
(cf. also e.g. LeMasson et al.,16).

Materials and methods
Striatal medium spiny neuron
The membrane voltage V

m
 is modeled as

V
C

I Im i syn
i

= − −
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
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
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The individual currents are modeled by conductances, state vari-
ables and the reversal potential:
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The dynamics are defined using state variables for activation (m) 
and inactivation (h). The types of equations used for the dynamics 
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Standard parameter values for the modeling of ion channels (“naive 
state”) were compared with several publications. Parameter values 
for I

K
, I

Na
 and I

leak
 were adapted from20, for L-type calcium channels 

(I
CaL

) from21 and22, see Table 1.

Parameters for slow A-type K channels (I
As

) were adapted from23,24, 
for fast A-type K channels (I

Af
) from25, for inward rectifying K 

channels (I
Kir

) from26, and the resulting parameter tables were com-
pared with27 and28, see Table 2.

Modulation
The maximum conductance of different ion channels can be 
expressed by a scaling factor in the membrane potential equations 
as in Eq. 2 (for synaptic currents I

i
) or Eq. 3 (for synaptic conduct-

ances g
s
), cf. Gruber et al.,28.

� …V
C

I I I Im i i syn=− + + −





1
1 1 2 2µ µ µ

       
(2)

� …V
C

g V V g V Vm m s m=− −( )+ + −( )
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


1
1 1 0 0µ

   
(3)

Both neuromodulator (NM)-independent and NM-dependent mod-
ifications may coexist in a neuron, as expressed in Eq. 4 ([NM] 
stands for the level of synaptic availability of a neuromodulator 
NM).

The state variables can be defined indirectly using

m
. = (1 – m)a — mb

and
h
.
 = (1 – h)a — hb

and one of the (Equation 1–Equation 3) with different values for λ 
(λα, λβ), Vi

 (V
i
α, V

i
β) and V

c
 (V

c
α, V

c
β). We use this method for the ion 

channels in Table 1.

The state variables can also be directly defined (cf. Goldman 
et al.,14):

�
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m
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h
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The parameters used are m∞ = m0, h∞ = h0, τ
m
 and τ

h
 as in Table 2. 

Again, we use one of the (Equation 1–Equation 3) with the λ 
parameters (λ

m0
 and λ

h0
) set to 1. These representations are math-

ematically equivalent and related by

m m

m m m m
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+
=

+
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α β
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Table 1. Parameter values for INa, IK, Ileak as in20, ICaL as in21,22 for activation (m) and inactivation (h) (see
Equation 1 ). Exponents (p, q), conductanceg      –  (in mS) and parameters are shown. The types of equations 
(Eqa, Eq b) are 1 for exponential, 2 for logistic, and 3 for linexp (see text for the equations). The reversal 
potential E rev is given in mV.

I p q g– λa Vc

a
Vi

a
Eq

a
λb V c

b V i

b Eqb Erev

Na (m) 3 35 0.1 10 –28 3 4.0 18 –53 1 55

Na (h) 1 0.07 20 –51 1 1 10 –21 2

K 4 6 0.01 10 –34 3 0.125 80 –44 1 –90

CaL (m) 2 0.01 0.06 3.8 –40 3 0.94 17 –88 1 140

CaL (h) 1 4.6e-4 50 –26 1 6.5e-3 28 –28 2

leak 0.04 –75

Table 2. Parameter values for potassium channels IKir, IAf, IAs and a slow sodium channel INas 

cf.27,28, where (a) τm = 131.4/(exp(–(Vm + 37.4) /27.3) + exp((Vm + 37.4)/27.3)) (b) τh = 179.0 + 

293.0 * exp(-((Vm + 38.2)/28)2) * ((Vm + 38.2)/28) (c) τm = 637.8/(exp(–(Vm + 33.5)/26.3)+exp ((Vm 

+ 33.5)/26.3)). Exponents (p, q), conductance g– (in mS), parameters m0 and h0 for a logistic 
function (equation type 2), and time constants τm, τh are shown. The reversal potential Erev is given 
in mV.

I p q g– Vc

m0 V i

m0 Eqm0 Vc

h0 V i

h0 Eqh0 τm τh
Erev

Kir 1 0.15 –10 –100 2 <0.01 <0.01 –90

Af 1 1 0.09 7.5 –33 2 –7.6 –70 2 1 25 –73

As 1 1 0.32 13.3 –25.6 2 –10.4 –78.8 2 (a) (b) –85

Nas 1 0.11 9.4 –16.0 2 (c) <0.01 40
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and mS/cm2 to describe the spikes, rather than a voltage. We have 
tuned the model to g

syn
= 0.0035mS/cm2 to induce a first spike for the 

naive or standard neuron (all μ = 1). At –40mV (firing threshold), 
this is 0.0035mS/cm2 * (–40mV) = – 1.4μA/cm2 or 0.6nA, which 
corresponds to the experimentally measured average value for the 
rheobase from resting potential in29. We may increase the correla-
tion in the input by using a percentage W of neurons which fire at 
the same time. Higher values for W increase the amplitude of the 
fluctuations of the input (cf. Benucci et al.,34). For details see the 
Matlab implementation.

Implementation
The simulator has been implemented in Matlab and is available 
at https://github.com/gscheler/CNeuroSim.git. The entire code is 
interpreted and no specific code optimizations have been applied. 
For numerical integration, the solver ode45 was used.

Results
Intrinsic modulation
We explore the impact of small variations in ion channel conduct-
ances on the shape of the activation function. As an example, we 
show the current and conductance changes for a slowly inactivating 
A-type K+ channel (Kv1.2, I

As
), L-type calcium channel (I

CaL
) and 

inward rectifying K+ channel (I
Kir

) at different membrane potentials 
modulated by a scaling factor μ = {0.6, 0.8, 1.0, 1.2, 1.4} (Figure 1, 
Figure 2). Regulation of the voltage-dependence35 and even of the 
inactivation dynamics of an ion channel36 has also been shown, but 
these effects are not further discussed here.

We can see that there are critical voltage ranges (around –50mV, 
around –80mV and starting at –40mV), where the conductance and 
the current are highest, and where scaling has a significant effect, 
while scaling has small or no effect in other voltage ranges. (The 

� …V
C

I NM I I NM Im =− +[ ]( )+ +[ ]( )





1
1 1 1 1 2 2 2 2µ κ µ κ

 
(4)

In this paper, for simplicity, we shall refer to (Eq. 2) as the generic 
format for intrinsic adaptation, with the understanding that μ is 
replaceable by [NM]κ.

Physiological ranges for μ can be estimated by various means. There 
are measurements for modulation in electrophysiologically defined 
membrane behavior (current threshold, spike response to current 
pulses etc.29,30) that are typically expressed as standard errors (e.g., 
16–20% for current threshold29). There are also attempts at clas-
sifying MSN (Medium Spiny Neuron) cells into different ‘types’ 
based on their electrophysiological profile31,32. Modeling shows 
that modulation of ion channel conductances with a range of ±40% 
matches measures of electrophysiological modulation and repro-
duces the ranges for MSN types (data not shown). Interestingly, 
direct measurements for dopamine D1 receptor-mediated changes 
on ion channel conductances are approximately in the same ranges 
(±30–40%28). Our discussion is thus based on an estimate of μ rang-
ing from 0.6–1.4 for each channel.

Defining synaptic input
Synaptic input is defined by overlays of the excitatory postsynaptic 
potentials (EPSPs) generated by N individual Poisson-distributed 
spike trains with mean interspike interval τ

syn
. Each EPSP is mod-

eled as a spike with peak amplitude I
0
 = 1.2μA/cm2 and exponential 

decay with τ = 2.5ms similar to22,33. IPSPs are modeled in a similar 
way with I

0
 = –0.4μA/cm2. This corresponds to 0.5nA (–0.2nA) as 

peak current (with 1nA = 2.3μA/cm2). Synaptic conductances are 
calculated by g

syn
 = I

syn
/(V

m
 – V

0
) with V

0
 set to 0mV. In order to be 

consistent with our simulation environment we use the units μA/cm2 

Figure 1. Modulation of ion channel density. Variable factors (µ = {0.6 ... 1.4}) for the slowly inactivating K+ -channel (Kv1.2, IAs), the L-type 
calcium channel (ICaL), and the inward rectifying K+ channel (IKir) are shown at different membrane voltages Vm (A) in an I-V plot, (B) as 
modulation in conductance.
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Figure 2. Modulation of the activation function. Variable factors (µ = {0.6 ... 1.4}) for IAs, ICaL, and IKir as components of the activation function 
(gs vs. Vm). This function is defined as the membrane voltage response for different injected (synaptic) conductances (gs), and computed by 
solving Eq 3 for the membrane voltage Vm.

Na+ current has been disabled for this example to prevent the neu-
ron from firing).

In Figure 3, we show the current over time–to graphically display 
the slow dynamics of the I

As
 and I

CaL
 channel. Since we do not 

change the activation-inactivation dynamics of any channel in our 
model, we show currents only for μ

As
, μ

CaL
 = 1.

We can see that I
As

 activates moderately fast (20ms), while it 
inactivates with a half-time of about 300ms, depending on the volt-
age. For I

CaL
, activation is almost instantaneous, but inactivation is 

> 500ms.

The activation function for the MSN model shows a time-dependence 
only in the high-voltage range (at or above –55mV), whereas the 
components in the lower voltage ranges are not time-dependent.

Mathematically, we can consider the individual channels as a set 
of functions that allow function approximation for the activation 
function. Each particular adjustment of an activation function can 
be considered learning of a filter which is suited to a specific pro-
cessing task. The activation-inactivation dynamics would provide a 
similar set of functions for the temporal domain. Of course, it is inter-
esting to note which particular basis functions exist, and also how 
the temporal dimension is tied in with specific voltage-dependences. 
For instance, the slowly inactivating potassium channel I

As
 provides 

a skewed mirror image of the function of calcium-gated Sk/BK 
channels, which are responsible for after hyperpolarization, making 
different variants of frequency filters possible. On this basis, a map-
ping of ion channel components and their density or distributions 
in different types of neurons could provide an interesting perspec-
tive on direct interactions for neurons from different tissue types or 
brain areas, as well as e.g., between cholinergic interneurons and 
MSNs within striatum.

To further explore the influence of modulation on the activation 
function, we apply realistic synaptic input with different amounts 
of correlation to individual MSNs (see Figure 4).

This shows us that small adjustments in the contribution of a spe-
cific ion channel can result in significantly different spiking behav-
ior even for identical synaptic input. This occurs when the input is 
distributed, i.e., has low correlation. In this case, the neurons spike 
independently of each other and with different frequencies. We can 
eliminate this effect by increasing the correlation of the input. 
Because of the slow activation/inactivation dynamics of the I

As
 chan-

nel, (latency of ≈ 20ms) only low correlated input activates these 
channels (“neuronal integrator mode”), but highly correlated inputs 
do not activate these channels, driving the membrane to spiking 
quickly (“coincidence detector mode”). Therefore correlated input 
can produce reliable spiking behavior for model neurons which dif-
fer in the relative contribution of the slow I

As
 channel. Distributed 
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Figure 3. Activation-inactivation (temporal) dynamics. (A) dynamics for the slow A channel IAs (B) the L-type Ca channel ICaL, and  
(C) for the set of ion channels used in the standard MSN model. We see a rise-time due to IAs and overlapping inactivation dynamics in the 
-55 to -40 mV range.

Figure 4. Input correlation-dependent read-out of intrinsic memory. Response to inputs generated from N = 80 neurons firing with 20Hz 
with independent Poisson processes using different correlation parameters W = 0.2, 0.9 (A, B). Extreme values of correlations have been 
chosen for demonstration purposes. Three slightly different neurons with µAs = 1.1,1.3,1.5 are shown under BOTH conditions. (A) Response 
modulation and different firing rates for each neuron (here: 20, 26, 40Hz) occur with distributed (low correlation) input. (B) Highly correlated 
input produces reliable spiking and by implication a single firing rate (20Hz). The upper panel shows the membrane voltage, the middle 
panel shows the membrane conductances, and the lower panel shows the synaptic input as conductance.

input, in contrast, activates slower ion channels, and can produce 
different tonic firing rates, here according to the contribution of the 
I

As
 channels, as long as strong synaptic input keeps the neuron in the 

relevant voltage range (“persistent activity”).

Similarly, the differential contribution of other channels (high- 
voltage gated L-type Ca-channels, hyperpolarization-activated GIRK 
channels or calcium-dependent Sk/Bk channels) will affect neu-
ronal behavior, when the conditions for a prominent influence of 
these channels are met.

We are modeling a state of MSNs that exhibits regular tonic firing. 
In experimental studies37, showed that MSNs, similar to cortical 
neurons, exhibit upstate-downstate behavior, reminiscent of slow-
wave sleep, under certain forms of anesthesia (ketamine, barbitu-
rate). However, under neuroleptanalgesia (fentanyl-haloperidol)50, 
showed that MSNs can show driven activity, when cortical input is 
highly synchronized, and exhibit a state characterized by fluctuat-
ing synaptic inputs without rhythmic activity (i.e., without upstates/
downstates), when cortical input is desynchronized. The regular, 
tonic spiking in this state is very low, much less than in the waking 
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This rule can also be implemented by individual increases in excit-
ability after each action potential, and decreases of excitability for 
periods of time without action potentials. Experimental data38,50 
indeed show such adaptation of intrinsic excitability after individ-
ual spikes.

The function h can be applied to a single ion channel, such as I
As

, 
but also to a number of ion channels in parallel: e.g., to mimic 
dopamine D1 receptor activation, h may be applied to μ

As
 (upregu-

lated with high A
n
), μ

Na
 (downregulated with high A

n
), and μ

CaL
 (down-

regulated with high A
n
). We suggest that there exists a biological 

feedback mechanism between the firing rate θ and the regulation of 
ion channel density and expression via intracellular signaling path-
ways, probably mediated by intracellular calcium level.

Pattern learning
We can show the effect of this learning rule on pattern learning. We 
generate synaptic inputs from a grid of 200 input neurons for a sin-
gle layer of 10 MSNs. On this grid we project two stripes of width 
4 as a simple input pattern P

learn
 by adjusting the mean interspike 

interval (ISI) for the corresponding input neurons to a higher value 
(ISI = 350ms for on vs. 750ms for off neurons, see Figure 5).

We apply the learning rule to each of the currents I
Na

, I
CaL

 and I
As

. 
This mimics changes in dopamine D1 receptor sensitivity, which 
targets these ion channels. Adaptation can be weaker or stronger, 
depending on learning time (e.g., σ = 0.01, t = 20s (20 steps) 
(weak), t = 40s (40 steps) (strong)). After a number of steps, we 
achieve a distribution of μ-values that reflects the strength of the 
input (Table 3A).

In Figure 6, we obtain spike frequency histograms from the set 
of MSNs under different conditions. Figure 6A shows the naive 
response to the input pattern P

learn
–high activation in two medial 

animal, which may be related to the dopamine block by haloperi-
dol. This makes a waking state of MSNs characterized by regular 
tonic spiking at different firing rates probable.

In the following, we show how intrinsic excitability adaptation can 
lead to different recalled firing rates under appropriate synaptic 
stimulation. The model could thus reflect learning that is recalled or 
read out during MSN states under desynchronized cortical input–in 
contrast to highly synchronized input, which would homogenize 
the response of the coincidence detecting neurons and favor reli-
able transfer of spikes.

Induction and maintenance of plasticity
The general idea for learning intrinsic plasticity is to use a learning 
parameter h for each individual update of the conductance scaling 
factor μ. The direction of learning (h > 0 or h < 0) is determined 
from the neural activation (A

n
) for each individual neuron. Neural 

activation is largely determined by intracellular calcium. We cal-
culate the neural activation A

n
 from the spike rate of the neuron, 

measured over 1s of simulated behavior (see Discussion).

We define a bidirectional learning rule dependent on an initial firing 
rate θ: excitability is increased by a step function h (with stepsize σ) 
when A

n
 is greater than θ, excitability is decreased when A

n
 is lower 

than θ (“positive learning”). This means, when the actual neural 
activation is higher than the initial firing rate, membrane adapta-
tions aim to move the neuron to a higher excitability in order to 
create a positive memory trace of a period of high activation (which 
can then be replicated under distributed synaptic stimulation). The 
same mechanism applies to lower the excitability of a neuron.

∆

∆

µ σ θ

µ σ θ

= ( )= >

= ( )=− <

h A A

h A A
n n

n n

if 

if          (5)

Figure 5. Pattern learning. 200 input neurons (arranged as 20 × 10), 10 learning neurons, and definitions for 3 patterns. Only 37 of 80 data 
points for Pnoise are shown.
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Table 3. Pattern learning: Parameter values (A) for positive learning with (weak/
strong) adaptation of μ values and (B) negative learning. CaL and Na channels are 
adapted in the opposite direction to K channels.

no μCaL μAs μNa                          no μCaL μAs μNa

1 0.9/0.8 1.2/1.4 0.9/0.8                          1 1.4 0.7 1.0

2 0.9/0.8 1.2/1.4 0.9/0.8                          2 1.4 0.7 1.1

3 1.0 1.0 1.0                          3 0.9 1.1 1.0

4 1.1/1.2 0.8/0.6 1.1/1.2                          4 0.6 1.4 0.8

5 1.0 1.0 1.0                          5 1.1 0.8 0.9

6 0.9/0.8 1.2/1.4 0.9/0.8                          6 1.4 0.7 1.1

7 1.0 1.0 1.0                          7 1.1 0.8 0.9

8 0.9/0.8 1.2/1.4 0.9/0.8                          8 0.7 1.4 0.8

9 1.0 1.0 1.0                          9 1.0 0.9 0.9

10 0.9/0.8 1.2/1.4 0.9/0.8                          10 1.4 0.7 1.1

A                          B

areas. After adaptation, this response is increased (Figure 6B). 
When we apply a test input of a random noise pattern P

noise
, we 

see that the learned pattern is still reflected in the spike histogram 
(Figure 6C). This retention of pattern learning in the presence of 
noise could be further explored with a detailed statistical analysis 
while quantifying noise levels. For positive learning, this process 
is theoretically unbounded, and only limited by the stepsize and 
the adaptation time. A saturation state could be defined to prevent 
unbounded learning, which would also allow to perform capacity 
calculations.

We should note that applying just one pattern continuously results 
in a very simple learning trajectory: each update results in a step 
change in the relevant ion channel currents. However, we also show 
that the effects of stepwise adaptation of individual ion channels 
do not necessarily lead to a completely parallel adaptation of firing 
rate. In Figure 6 we see that adaptation is much stronger for high 
input rather than low input neurons. In this case, θ at 11.5Hz is a 

fairly low value for neurons to continue to lower their firing rate 
with stepwise adaptation of the chosen ion channels. This shows the 
importance of using appropriate tuning (“harnessing”) mechanisms 
to make highly nonlinear channels work in a purely linear learning 
context.

Clearly one of the results of learning is an altered spiking behavior 
of individual neurons dependent on their history. It is important to 
realize that this rule is based on neural activation, not synaptic input 
as a learning parameter - since synaptic input is constant during 
learning.

Positive and negative trace learning
We show that this mechanism can be employed not only for positive 
trace learning, when excitability adaptation corresponds to frequen-
cy response, but also for negative trace learning, when excitability 
adaptation counteracts frequency response and approximates a tar-
get firing rate θ. This target rate could be set as a result of global 

Figure 6. Positive pattern learning. Spike frequency histograms for 10 adaptive neurons (θ=11.5Hz) (A) response of naive neurons to Plearn 
(B) response of Plearn-adapted neurons to Plearn (C) Plearn-adapted neurons tested with Pnoise. Average synaptic input (nA/cm2) for each neuron is 
shown on top. Responses in (A) and (B) to the same input Plearn are different, a pattern similar to Plearn emerges in response to uniform (noise) 
pattern input in (C).
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Figure 7. Negative pattern learning. Learning results in different 
activation functions for high (4, 8), medium (3, 5, 7, 9) and low (1, 
2, 6, 10) input.

inhibitory mechanisms corresponding to the expected mean A
i
 

values under physiological stimulation. Accordingly, the neuron 
responds with decreases of excitability to high input ranges and 
increases of excitability to low input ranges (Figure 7).

∆

∆

µ σ θ

µ σ θ

= ( )=− >

= ( )= <

h A A

h A A
n n

n n

if 

if           (6)

This emphasizes that “homeostatic” responses - adjusting excitabil-
ity in the opposite direction to the level of input - can implement 
trace learning (pattern learning and feature extraction) as well. We 
note that this learning rule is not guaranteed to be stable beyond our 
own simulation runs. Additional mechanisms, such as concurrent 
synaptic plasticity, may be necessary to provide a stable learning 
regime.

The negative learning rule results in a mirror image of parameter 
values compared to positive learning, as shown in Table 3B. The 
naive response is the same as before (Figure 6A). But here, after 
adaptation, the neurons have habituated to the input, and do not 
produce a strong response anymore (Figure 8A). When neurons are 
tested with P

noise
, an inverse version of the original pattern appears 

(Figure 8B). Similarly, when we apply a different pattern P
test

, we 
obtain a spike histogram, where the learned pattern is overlayed 
with the new input, resulting in a dampening of the frequency 
response for P

test
 (Figure 8C).

In our simulations we have applied either a positive or a negative 
learning rule. It is an open, and very interesting question, whether 
both types of learning may occur in a single tissue, distributed over 
different neurons, or neuron types, or whether only one of these 
forms will prove to occur in a real biological context.

For both positive and negative traces, learning is pattern-specific, 
i.e., training with homogeneous, fluctuating (high-low) noise, such 
as P

noise
, results in no adjustments (or computes an average). How-

ever, any prolonged sequence of neuron-selective stimulation 
results in neuron-selective patterns. This requires the population to 
be protected from prolonged stimulation with random patterns in 
a biological setting. We may assume most patterns to be meaning-
ful and highly repetitive, while the neuron exists in a plastic state, 
while patterns may be random, when the neuron is not plastic 
(because it is stimulated with highly correlated or very low fre-
quency input, saturated in its parameters or undergoes ion channel 
block by selected neuromodulators).

The whole approach to pattern storage and responses elicited to 
stimulation is summarized again in Figure 6 and Figure 8. We can 
see that pattern storage by changes in intrinsic excitability is useful 
for a short-term buffer system for complete patterns. Patterns are 
imprinted upon a set of neurons and remain available as long as 
they are not obliterated or overwritten by an opposite pattern. Pre-
sumably the pattern degrades over time. Training with a new pattern 
– during the period of active maintenance of the pattern–would 
result in cross-activation, i.e., the generation of a mixed pattern. 
This may well be a useful feature of a short-term pattern storage 

system. It allows for pattern integration, or pattern completion from 
different sources. Adapting intrinsic excitability has inherent limita-
tions of storage capacity. We do not fully understand where patterns 
go after they have passed through the intrinsic buffer system, but we 
assume that synaptic growth, intracellular changes and membrane 
adaptations in a variety of trafficking proteins (receptors and chan-
nels) all play a role. In the simplest case, the intrinsic buffer system 
serves only to integrate and maintain a pattern of neural excitation 
until all the necessary synaptic adjustments that the memory system 
requires for permanent storage have been made. However, it is not 
clear, and actually highly doubtful at this time that the difference 
between short-term and long-term storage is clear-cut between 
intrinsic (neuronal) and synaptic (esp. glutamatergic synaptic) stor-
age systems.

Discussion
Experimental results on induction of intrinsic plasticity
A number of experimental results show that intrinsic plasticity in 
MSNs may be prominently induced and regulated by intracellular 
calcium: It has been shown that e.g., the regulation of delayed recti-
fier K+-channels (Kv2.1 channels) is effectively performed by Ca2+ 
influx and calcineurin activation in cultured hippocampal neurons, 
which can be achieved by glutamate stimulation35. The regulation 
concerns marked dephosphorylation (reduction of conductance) 
plus a shift in voltage-dependence. It has also been shown that 20s 
of NMDA stimulation, or alternatively, increase of intracellular 
calcium, increases functional dopamine D1 receptor density at the 
membrane, which corresponds to an alteration in κ for D1 param-
eters, targeting a number of ion channels simultaneously39. For deep 
cerebellar neurons, there has recently been some direct evidence on 
the conditions required that induce intrinsic plasticity. Here, altera-
tions in intrinsic excitability can be induced by bursts of EPSPs and 
IPSPs, accompanied by dendritic calcium transients38. In striatal 
MSNs, it has been determined that synaptic stimulation at 1Hz does 
not cause significant calcium signals, but 10Hz stimulation causes 
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needs to adjust activation functions relative to each other, e.g., to 
ensure optimal distribution of activation functions. This probably 
happens in the cortical maps, such as frequency maps in auditory 
cortex43.

In hippocampus, synaptic and intrinsic modulation may potentiate 
each other (E-S potentiation1), but in other systems (e.g., striatum) 
antagonistic regulation may also exist (such as LTD combined with 
positive learning), with effects on the balance of synaptic vs. whole-
cell localization for the storage of information.

Neuromodulation
When ion channels are regulated by neuromodulation, we can use a 
factor [NM]κ, where [NM] is the extracellular concentration of the 
ligand and κ the receptor sensitivity (see, Eq. 4). κ stands for the 
influence that a NM signal of a certain strength has on a particu-
lar ion channel, i.e., the degree of coupling between NM receptor 
ligand binding and ion channel modification44. Typically, a signal 
[NM] will regulate several ion channels in parallel, but there may 
be different κ

i
 for each ion channel.

If activation function adaptation proceeds by NM-activated κ 
parameters, rather than unconditioned μ parameters, response to 
stimuli will consist of an early, non-modulated component, where 
the input pattern is reflected directly in the spiking frequency, 
and a later, modulated component, where habituation occurs for 
a learned pattern, or the stored pattern is reflected by overlaying a 
new stimulus and the stored pattern.

NM signals orchestrate both adjustments in activation function 
and synaptic input, with NM activation often depressing synapses, 
but increasing the modulation in the activation function through 
selected conductance changes (activating κ-parameters). As a result, 
the input component of the signal is reduced in comparison to the 
stored intrinsic component after NM activation. Presumably, this 
has a dynamic component, such that for a short time after a strong 

Figure 8. Negative pattern learning. Spike frequency histograms for 10 adaptive neurons (θ=11.5Hz) (A) habituation for neurons adapted 
to Plearn, (B) an inverse pattern for Plearn-adapted neurons tested with Pnoise and (C) interference (dampening of response) for a new pattern 
Ptest (naive: line-drawn bars, adaptive: filled bars). Average synaptic input (nA/cm2) for each neuron is shown on top. (A) shows a uniform 
response to patterend synaptic input and (B) a patterned response to uniform (noise) input. (C) shows a difference of response for naive vs. 
Plearn-adapted neurons to a new pattern Ptest.

moderate increases, and higher stimulation (up to 100Hz) signifi-
cantly raises calcium levels40.

In the simulations, neural activation (A
n
) is estimated from the num-

ber of spikes generated, measured over the simulated behavior. In 
the model case, the membrane potential is not used as a separate 
parameter, because membrane potential and spiking behavior are 
closely linked. However, when a neuron exhibits prominent upstates 
(periods of high membrane voltages with a variable number of 
actual spikes), membrane potential may need to be treated as an 
additional, independent component of A

n
, since a great part of the 

intracellular calcium signal in striatal MSNs is being generated from 
high voltage activated NMDA and L-type calcium channels41. The 
number of spikes produced nonetheless seems important because 
of the phenomenon of backpropagating spikes. Backpropagat-
ing spikes enhance the calcium signal, thus providing a basis for 
a prominent role for spiking behavior, or firing rate, for defining 
intracellular calcium. The presence of backpropagation of spikes 
has recently been confirmed for MSNs41.

In general, the induction of intrinsic plasticity may be linked not 
only to intracellular calcium. There exists an intricate intracellular 
system of interactions between diffusible substances like calcium 
and cAMP, as well as a number of crucial proteins (RGS, calcineu-
rin, PKA, PKC, other kinases and phosphatases) for regulating 
receptor sensitivity and ion channel properties, which are further-
more influenced by NM receptor activation. Thus the learning 
parameter h may be analyzed as being dependent not only on A

n
, 

but also on [NM], and possibly even a third variable for a–slowly 
changing–intracellular state.

Synaptic vs. intrinsic plasticity
Learning by intrinsic excitability seems particularly suitable for 
striatal MSNs, since they have few lateral connections, which pro-
vide only a small part of their total input42. When we have strong 
recurrent interaction, as in cortex, intrinsic excitability learning 
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The detailed interaction between synaptic and intrinsic plasticity is 
still an open question. Here we have shown a simple, local learning 
mechanism for intrinsic plasticity that allows to store pattern infor-
mation without synaptic plasticity. This is different from theoretical 
approaches, where activation functions are only being modulated 
to optimize global measures of information transmission between 
neurons while the information is exclusively stored in synaptic 
weights. Further work will be needed to investigate the smooth 
integration of synaptic and intrinsic plasticity and their respective 
functions in different systems.

Conclusions
We wanted to show quantitatively that IP can have significant 
effects on spike frequency, dependent on the statistical structure of 
the input. In particular, low correlated input, or input during sensi-
tive (high-voltage membrane) states induces the strongest modu-
lation of spike responses for different activation functions, while 
highly correlated input acts as drivers for neurons, eliminating sub-
tle differences in the activation function. We suggested that starting 
from a very general, natural format for a learning rule, which can 
be biologically motivated, we arrive at simple pattern learning, the 
basis for feature extraction, and realistic types of neural behavior: 
population-wide increases/decreases of neural firing rates to novel 
input stimuli, habituation to known stimuli and history-dependent 
distortions of individual stimuli. A significant application of this 
theoretical model exists in the observation of pervasive whole-cell 
adaptations in selected ion channels (I

Na
, I

CaL
) after cocaine sensiti-

zation47–49, with implications of the type of learning that underlies 
addiction. This would reduce the dynamic range of intrinsic plas-
ticity. Potentially, then, learning in striatum is mediated in part by 
intrinsic plasticity50, and a reduction in inducible intrinsic plasticity 
or dynamic range of intrinsic plasticity after cocaine sensitization 
may contribute to the pathology of addiction.
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signal there is an input-dominant phase which is then followed by 
an intrinsic-dominant phase.

Homeostasis, permanence and information flow
There are different ideas at the present time what intrinsic plasticity 
can achieve within a network model of neuronal interaction. Reviews 
of intrinsic plasticity1,10,18 are undecided, whether IP acts mainly to 
maintain homeostasis, adapting to changes in synaptic strength 
by keeping neurons within certain ranges but without significant 
informational capacity, as in the model of17, or whether they are 
themselves capable of being modified in response to particular pat-
terns of activity in ways that facilitate learning and development45. 
However, as we have shown, homeostatic adaptation does not 
exclude information storage under conditions of conditional read-
out. The synergy between synaptic and intrinsic plasticity may take 
different forms, beyond E-S potentiation. Based on experimental 
evidence in different systems1,9,19 have listed many possible func-
tions and roles of intrinsic adaptive plasticity.

We have greatly simplified the exposition here by concentrating on 
spike frequency as a major indicator of neural behavior. Certainly 
the type of firing (e.g., burst firing) is also under control of neuro-
modulators, and may be influenced by the distribution and density 
of ion channels. Single neuron computation is more complex than 
what can be shown with a single compartment model. In dendritic 
computation, the coupling of different compartments may be prom-
inently affected by intrinsic plasticity. For instance35, showed a loss 
of clustering for K+ channels on the membrane, induced by high 
glutamate stimulation, indicating a possible input-dependent regu-
lation of dendritic integration.

Studies of concurrent simulation of synaptic coupling parameters 
and intrinsic ion channel conductances has concluded that intrin-
sic and synaptic plasticity can achieve similar effects for network 
operation15. We have suggested that synaptic and intrinsic plastic-
ity can substitute for each other, and furthermore that this essen-
tial functional parallelism could be an indication for information 
flow over time from one modality to the other. The direction of this 
information flow may be from intrinsic to synaptic for the induc-
tion of permanent, morphological changes (such as dendritic spine 
morphology)–however in some systems (e.g., cerebellum) intrinsic 
plasticity may also have a permanent component (Purkinje cells)5,46. 
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In the first part of the manuscript the author describes the voltage dependent sensitivity of the VI curves of
the different ion channels as a function of neuromodulation. This result follows directly from the fact that
different ion channels are active at different voltages. Next, the author shows that a plasticity rule can be
realised by changing the conductance of different ion channels. The author provides a nice simple
demonstration of this interesting idea. But the manuscript needs a major revision to clarify several issues. 

Below are my comments, and I have tried not to repeat the first reviewer. 

I do not think it is correct to refer to the VI curve as the activation function of a neuron. In general it is not
correct to use the word ‘variability’ to refer to the modulation of the VI curve due to μ. I think ‘sensitivity’
better captures the observation. 

In Figure 1 the author shows that modulation of the VI curve is maximal around specific voltages. But it
seems that this modulation in the VI curve depends on the value of current at that voltage. Obviously, e.g.
when I_{Kir} is zero for μ=1 , it does not matter how much you change μ, there will not be any change in
the VI curve at that voltage. To make a claim about the sensitivity of the VI curves in different voltage
ranges, it should scaled for the VI curve for μ=1. 

The claim that the VI curves can act as basis functions is made in a loose sense and should be
strengthened, else remove it from the text. 

Figure 4: Is there a range of μ values for which correlations fail to induce reliable spiking response. In
general 0.9 is a very high correlation. How do the neurons behave for more acceptable correlations
values e.g. 0.1-0.2?

Induction and maintenance of plasticity: The author wrote “Neural activation is largely determined by
intracellular calcium but here we estimate…”. What is the meaning of ‘Neural activation’? Why is it
determined by calcium? If it is spike output, then it is mainly determined by the kind of its input.

The learning rule is formulated in such a way that for every input to these neurons, there will be increased
response (positive learning) and other way around in the negative learning. So this learning will increase
the noise level in the networks. 

The learning rule is unstable, because one neuronal activity is above the threshold θ its firing can only
increase. Authors argue that adaption could be a way to stabilise the firing rates, however is not clear
whether the model will converge, because if the firing rate drops below θ, then neuron response can only
decrease.

Finally, there is another implementation related problem with the learning rule. An external agent is
assumed which checks the firing rate of the neuron above or below a baseline firing rate and then updates
the ion channel parameters. If we compare it to synaptic plasticity do not require such an agent, because
every spike can causes a weight update.

An important question is how the learning rule could switch between negative and positive learning
regimes. 

In general, the methods are poorly described. See minor comments for more details. 
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Minor points:
Page 1: left col. last para, II line: The sentence does not link with the previous and next sentences.
Moreover, it needs to be rephrased; the reference nos. are in superscript, that's why the sentence
does not read correctly. 
 
I do not understand what the author means by “Thus, intrinsic plasticity is conceptualized as
fundamentally different from synaptic plasticity which does not encompass such a state change”. It
is obvious that synaptic plasticity can cause state changes. 
 
The difference in Eq. 2 and Eq. 3 is not clear with regard to the implementation of the ion channel
conductances. What does g_s refer to in Eq. 3? 
 
Equation 4:  In the expression [NM]K, it is not clear if ‘K’ is a multiplier to [NM] or subscript. The
notations in the Eq. and in the corresponding text do not match. 
 
Page 4: EPSP’s should be expressed in the units of voltage and not in terms of the current. As far
as I understand this is a point neurone implementation of the MSN, so why should the synaptic
strengths be expressed in units of area?
 
The method to calibrate the synapses is not clear. What is the meaning of “ …0.6nA, which
corresponds to the experimentally measured average value for the rheobase in". At -40mV MSN is
already close to its spiking threshold? And rehobase is measured from resting membrane
potential? 
 
How were the correlations in input generated?
 
Figure 1: Please state which variable is plotted on the x- and y-axis. Providing just units is
confusing. Also it is not clear which line refers to which μ value? And therefore it is not possible to
know in which direct μ affects the v-i curves. I assume that all of the three VI curves are modulated
in the same direction. None of the axis measures ‘variability’ in this figure. What is plotted is the
change in the VI curve for different values of μ. So you want to refer to this effect as sensitivity of
the VI curve.
 
Figure 2: Once again I am not sure which axis shows the variability? And axis on the insets are
missing. 
 
Figure 3: Render the different lines in colours which reflect the voltage. In its current form it's not
easy to read these figures.
 
Figure 4: the o/p is shown for only one value of i/p firing rate (couldn't find any mention of what
value it is). Hence, in addition to the present figure 4, a figure showing i/p firing rate Vs o/p firing
rate for more than one data point of i/p firing rate could be included. This can be plotted for all the
three values of μ. This on the other hand could be drawn for few values of i/p correlations. 
 

Figure 8: It is not clear if the traces are drawn for +ve or -ve learning. The labels of neuron numbers
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Figure 8: It is not clear if the traces are drawn for +ve or -ve learning. The labels of neuron numbers
(No. 4,8) are right if it's for negative learning, but should be in reverse order if it's for positive
learning.
 
Page 9, first paragraph: Update the reference to figures after the changing the figure captions of
Fig. 7,8.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 13 May 2014
, Carl Correns Foundation for Mathematical Biology, USAGabriele Scheler

“I do not think it is correct to refer to the VI curve as the activation function of a neuron. In
general it is not correct to use the word ‘variability’ to refer to the modulation of the VI curve
due to μ. I think ‘sensitivity’ better captures the observation. 

In Figure 1 the author shows that modulation of the VI curve is maximal around specific
voltages. But it seems that this modulation in the VI curve depends on the value of current at
that voltage. Obviously, e.g. when I_{Kir} is zero for μ=1 , it does not matter how much you
change μ, there will not be any change in the VI curve at that voltage. To make a claim about
the sensitivity of the VI curves in different voltage ranges, it should scaled for the VI curve for
μ=1.”

Have added the variable names to the axes, as well as the μ values.

“Variability” has been replaced with “modulation” throughout the text.

Activation function has been replaced by I-V curve.
 
“The claim that the VI curves can act as basis functions is made in a loose sense and should
be strengthened, else remove it from the text.”

This has been removed.
 
“Figure 4: Is there a range of μ values for which correlations fail to induce reliable spiking
response. In general 0.9 is a very high correlation. How do the neurons behave for more
acceptable correlations values e.g. 0.1-0.2?”

These extreme values have been used for demonstration in this figure.
 
“The learning rule is formulated in such a way that for every input to these neurons, there will
be increased response (positive learning) and other way around in the negative learning. So
this learning will increase the noise level in the networks. 

The learning rule is unstable, because one neuronal activity is above the threshold θ its
firing can only increase. Authors argue that adaption could be a way to stabilise the firing
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firing can only increase. Authors argue that adaption could be a way to stabilise the firing
rates, however is not clear whether the model will converge, because if the firing rate drops
below θ, then neuron response can only decrease.”

This is not guaranteed to be stable; additional mechanisms (additional research), for
example synaptic plasticity in the other direction, may be needed.
 
Finally, there is another implementation related problem with the learning rule. An external
agent is assumed which checks the firing rate of the neuron above or below a baseline firing
rate and then updates the ion channel parameters. If we compare it to synaptic plasticity do
not require such an agent, because every spike can causes a weight update.”

Have added a clarifying sentence.
 
“An important question is how the learning rule could switch between negative and positive
learning regimes.”

The negative/positive learning rule can depend on each neuron. We did not investigate this
for networks of neurons.

Minor Comments:
“I do not understand what the author means by “Thus, intrinsic plasticity is conceptualized
as fundamentally different from synaptic plasticity which does not encompass such a state
change”. It is obvious that synaptic plasticity can cause state changes.”

Have added a clarifying sentence.
 
“The difference in Eq. 2 and Eq. 3 is not clear with regard to the implementation of the ion
channel conductances. What does g_s refer to in Eq. 3?”

There was a typo in Eq. 3, which has now been fixed (please see response to Fidel
Santamaria).
 
“Equation 4:  In the expression [NM]K, it is not clear if ‘K’ is a multiplier to [NM] or subscript.
The notations in the Eq. and in the corresponding text do not match.”

This was an error introduced during typesetting; it has been corrected to κ (lowercase
kappa).
 
“Page 4: EPSP’s should be expressed in the units of voltage and not in terms of the current.
As far as I understand this is a point neurone implementation of the MSN, so why should the
synaptic strengths be expressed in units of area?”

All units in the simulation are expressed in area units; V  = 1/g  * I
 
“How were the correlations in input generated?”

Referred to code.
 

“Figure 1: Please state which variable is plotted on the x- and y-axis. Providing just units is

EPSP s EPSP
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“Figure 1: Please state which variable is plotted on the x- and y-axis. Providing just units is
confusing. Also it is not clear which line refers to which μ value? And therefore it is not
possible to know in which direct μ affects the v-i curves. I assume that all of the three VI
curves are modulated in the same direction. None of the axis measures ‘variability’ in this
figure. What is plotted is the change in the VI curve for different values of μ. So you want to
refer to this effect as sensitivity of the VI curve.”

Added plotted variables at the axes, and added μ values.
 
“Figure 2: Once again I am not sure which axis shows the variability? And axis on the insets
are missing.”

Added plotted variables at the axes, and added μ values.
 
“Figure 3: Render the different lines in colours which reflect the voltage. In its current form
it's not easy to read these figures.”

This has been done.
 
“Figure 4: the o/p is shown for only one value of i/p firing rate (couldn't find any mention of
what value it is). Hence, in addition to the present figure 4, a figure showing i/p firing rate Vs
o/p firing rate for more than one data point of i/p firing rate could be included. This can be
plotted for all the three values of μ. This on the other hand could be drawn for few values of
i/p correlations.”

One could have a figure with correlation on the x axis, and firing rate on the y. For low
correlations all three neurons are at 20, 26, 40. At a certain, higher, correlation rate it
switches from these frequencies to reliable firing modes correlated with the input – there
might be different correlation values for different neurons.
 
“Figure 8: It is not clear if the traces are drawn for +ve or -ve learning. The labels of neuron
numbers (No. 4,8) are right if it's for negative learning, but should be in reverse order if it's
for positive learning.”

It is negative learning, consistent with the original caption.
 
“Page 9, first paragraph: Update the reference to figures after the changing the figure
captions of Fig. 7,8.”

This has been done.

 noneCompeting Interests:

 09 May 2013Referee Report

doi:10.5256/f1000research.353.r936

 Fidel Santamaria
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 Fidel Santamaria
Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA

This is an interesting paper that aims to elucidate the contribution of intrinsic excitability plasticity on
neuronal learning using computer models. 

The paper would benefit from presenting a statistical analysis of the learning process. What is the
probability of distinguishing a learnt pattern as opposed of detecting a false positive?

The fact that P  also evokes a close firing rate response as P  should be closely addressed. Is the
output for P  and P  significantly different? There should be controls for having the same number of
input neurons to any pattern. Otherwise, the results in Figure 6 could be due to the overlap of P  and P

. Does the author propose a metric by which the neurons distinguish the learnt from the noisy pattern?

Figure 7 and 8 are mixed up in the text and with their captions. Please re-arrange. In the histogram of
what is now Fig. 7 the author again shows that P  is capable of eliciting a response that seems to be
different from background. Is this significantly different (statistically speaking)? 

I think there’s a typo in Eq. 3.

Although the premise of the paper is quite interesting I think the results and discussions would be much
better supported with a thorough statistical analysis of the spiking response of the model.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 13 May 2014
, Carl Correns Foundation for Mathematical Biology, USAGabriele Scheler

“Figure 7 and 8 are mixed up in the text and with their captions. Please re-arrange.”

This was a mixup during publication, and has now been corrected.
 
“I think there’s a typo in Eq. 3”

This has been corrected, so it reads: [μ (V -V ) + .... + (V -V )]g g

 noneCompeting Interests:
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